高三数学教学计划多篇合集由会员“琴琴”投稿推荐,但愿对你的学习工作能带来参考借鉴作用。
数学在高考中占的分值较大,为了让学生的数学成绩有所提高,需要教师做好教学计划。今天小编在这给大家带来高三数学教学计划,接下来我们共同阅读吧!
高三数学教学计划1
为了做好这学期的数学教学工作,我计划做好以下几方面的工作:
1、理论学习:
抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课标教学思想,树立现代化、科学化的教育思想。
2、做好各时期的计划:
为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元的进度情况进行详细计划。
3、备好每堂课
认真钻研课标和教材,做好备课工作,对教学情况和各单元知识点做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。
4、做好课堂教学
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
5、批改作业
精批细改每一位学生的每份作业,学生的作业缺陷,做到心中有数。对每位学生的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。
6、做好课外辅导
全面关心学生,这是老师的神圣职责,在课后能对学生进行针对性的辅导,解答学生在理解教材与具体解题中的困难,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学生信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
总之通过做好教学工作的每一环节,尽最大的努力,想出各种有效的办法,以提高教学质量。
高三数学教学计划2
根据学科的特点,结合我校数学教学的实际情况制定以下教学计划。
一、教学内容
高中数学所有内容:抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。
研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。
研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。
二、学情分析:我今年教授两个班的数学:(17)班和(18)班,经过与同组的其他老师商讨后,打算第一轮 __年2月底;第二轮从__年2月底至5月上旬结束;第三轮 从__年5月上旬至5月底结束。
三、具体措施
(一)同备课组老师之间加强研究
1、研究《课程标准》、参照周边省份__年《考试说明》,明确复习教学要求。
2、研究高中数学教材。
处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。3、研究__年新课程地区高考试题,把握考试趋势。
特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。4、研究高考信息,关注考试动向。
及时了解09高考动态,适时调整复习方案。5、研究本校数学教学情况、尤其是本届高三学生的学情。
有的放矢地制订切实可行的校本复习教学计划。(二)重视课本,夯实基础,建立良好知识结构和认知结构体系
课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。
(三)提升能力,适度创新
考查能力是高考的重点和永恒主题。教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。
(四)强化数学思想方法
数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。注重对数学思想方法的考查也是高考数学命题的显著特点之一。数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活。在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。
(五)强化思维过程,提高解题质量
数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。
(六)认真总结每一次测试的得失,提高试卷的讲评效果
试卷讲评要有科学性、针对性、辐射性。讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。
四、教学要求:
第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟 ……此处隐藏3598个字……
(11)三角函数的化简与求值(3)
(12)三角恒等式的证明(1)
(13)条件恒等式的证明(1)
(14)三角形的求值与证明(3)
(15)解斜三角形(2)
(16)三角不等式(1)
(17)三角函数的最值(2)
(18)反三角函数的概念、图像及性质(1)
(19)反三角函数的运算(2)
(20)最简单的三角方程(1)
(21)单元考试(4)
3、不等式(共24课时)(10月13日)
(1) 不等式的概念与性质(1课时)
(2) 不等式的证明(比较法)(1课时)
(3) 不等式的证明(分析法、综合法)(1课时)
(4) 应用均值不等式证明不等式(2课时)
(5) 不等式的证明(反证法、数学归纳法)(3课时)
(6) 一元一次不等式、一元二次不等式的解法(1课时)
(7) 分式不等式的解法(1课时)
(8) 无理不等式的解法(1课时)
(9) 含绝对值不等式的解法(1课时)
(10)指对不等式的解法(2课时)
(11)含参不等式的解法(3课时)
(12)均值不等式的应用(2)
(13)应用不等式求范围(2)
(14)章考(4课时)
(15)月考及讲评(4天)
4、数列、极限、数学归纳法(共20课时)(11月13日)
(1) 数列的通项(2课时)
(2) 等差数列(2课时)
(3) 等比数列(2课时)
(4) 综合运用(2课时)
(5) 数列的求和(3课时)
(6) 数列的极限(1课时)
(7) 数学归纳法(4课时)
(8) 归纳、猜想、证明(1课时)
(9) 章考(3课时)
(10)月考及讲评(4天)
5、复数(共15课时)(11月27日)
(1) 复数的概念(2课时)
(2) 复数的代数形式及运算(2课时)
(3) 复数的三角形式(1课时)
(4) 复数的三角形式的运算(2课时)
(5) 复数的加减法的几何意义(1课时)
(6) 复数的乘除法的几何意义(2课时)
(7) 复数集上的方程(2课时)
(8) 复数集上的方程(1课时)
(9) 章考(2课时)
6、排列、组合、二项式定理(共11课时)(12月1日)
(1) 两个基本原理(1课时)
(2) 排列、组合数公式(1)
(3) 排列应用题(1)
(4) 组合应用题(1)
(5) 排列、组合综合应用题(2)
(6) 二项式定理(3)
(7) 章考(2课时)
(8) 月考及讲评(4天)
7、直线与平面(共20课时)(12月24日)
(1) 平面及其基本性质(1课时)
(2) 空间的两条直线(1课时)
(3) 直线与平面(1课时)
(4) 平面与平面(1课时)
(5) 三垂线定理及逆定理(2课时)
(6) 平行间的转化(2课时)
(7) 垂直间的转化(2课时)
(8) 空间角(3课时)
(9) 空间距离(2课时)
(10)章考(3课时)
(11)月考及讲评(4天)
8、多面体与旋转体(共7课时)(12月31日)
(1) 柱体(1课时)
(2) 锥体(1课时)
(3) 台体(1课时)
(4) 球(1课时)
(5) 侧面张开图(1课时)
(6) 折叠问题(1课时)
(7) 体积问题(1课时)
(8) 自测
9、直线与圆(共10课时)(1月12日)
(1) 向线段与定比分点(1)
(2) 直线方程的几种形式(2)
(3) 两直线的位置关系(1)
(4) 对称为题(1)
(5) 圆的方程(1)
(6) 直线与圆的位置关系(2)
(7) 章考(2课时)
(8) 月考及讲评(4天)
10、圆锥曲线(共21课时)(2月4日)
(1) 充要条件(1)
(2) 椭圆(1)
(3) 双曲线(1)
(4) 抛物线(1)
(5) 坐标平移(2)
(6) 弦问题(4)
(7) 轨迹的求法(4)
(8) 最值问题(2)
(9) 取值范围问题(2)
(10)章考(3课时)
11、参数方程、极坐标(共5课时)(2月10日)
(1) 直线的参数方程及应用(2)
(2) 圆锥曲线的参数方程(1)
(3) 直线与圆的极坐标方程(2)
五、周练安排
1、出题安排
(1) 第2、5、8、11、14、17、20周
(2) 第3、6、9、12、15、18、21周
(3) 第4、7、10、13、16、19、22周
2、注意事项
每周星期一以前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。
六、过关题、典型题
1、出题安排
(1) 三角函数
(2) 不等式
(3) 数 列
(4) 复数、排列组合、二项式定理
(5) 立体几何
(6) 解析几何
2、注意事项
每章结束以前一周出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。
七、章考命题负责人
1、出题安排
(1) 三角函数
(2) 不等式
(3) 数 列 (4) 复数、排列组合、二项式定理
(5) 立体几何
(6) 解析几何
2、注意事项
每次考前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。
八、月考命题负责人
1、出题安排
(1) 第一次月考
(2) 第二次月考
(3) 第三次月考
(4) 第四次月考
(5) 第五次月考
2、每次月考前一周出好试题,交备课组讨论,负责定稿交好试卷。
高三数学教学计划5篇精选合集
你也可以在搜索更多本站小编为你整理的其他高三数学教学计划多篇合集范文。
文档为doc格式